Recent progress in retrieval-augmented generation (RAG) has led to more accurate and interpretable multi-hop question answering (QA). Yet, challenges persist in integrating iterative reasoning steps with external knowledge retrieval. To address this, we introduce StepChain GraphRAG, a framework that unites question decomposition with a Breadth-First Search (BFS) Reasoning Flow for enhanced multi-hop QA. Our approach first builds a global index over the corpus; at inference time, only retrieved passages are parsed on-the-fly into a knowledge graph, and the complex query is split into sub-questions. For each sub-question, a BFS-based traversal dynamically expands along relevant edges, assembling explicit evidence chains without overwhelming the language model with superfluous context. Experiments on MuSiQue, 2WikiMultiHopQA, and HotpotQA show that StepChain GraphRAG achieves state-of-the-art Exact Match and F1 scores. StepChain GraphRAG lifts average EM by 2.57% and F1 by 2.13% over the SOTA method, achieving the largest gain on HotpotQA (+4.70% EM, +3.44% F1). StepChain GraphRAG also fosters enhanced explainability by preserving the chain-of-thought across intermediate retrieval steps. We conclude by discussing how future work can mitigate the computational overhead and address potential hallucinations from large language models to refine efficiency and reliability in multi-hop QA.


翻译:检索增强生成(RAG)的最新进展推动了更准确、可解释的多跳问答(QA)系统的发展。然而,在迭代推理步骤与外部知识检索的整合方面仍存在挑战。为此,我们提出了StepChain GraphRAG框架,该框架将问题分解与广度优先搜索(BFS)推理流相结合,以增强多跳问答能力。我们的方法首先在语料库上构建全局索引;在推理时,仅将检索到的段落实时解析为知识图谱,并将复杂查询拆分为子问题。针对每个子问题,基于BFS的遍历会沿相关边动态扩展,从而组装出明确的证据链,同时避免语言模型被冗余上下文淹没。在MuSiQue、2WikiMultiHopQA和HotpotQA数据集上的实验表明,StepChain GraphRAG在精确匹配(EM)和F1分数上均达到了最先进的水平。相较于当前最优方法,StepChain GraphRAG将平均EM提升了2.57%,F1提升了2.13%,其中在HotpotQA上取得了最大增益(EM +4.70%,F1 +3.44%)。此外,StepChain GraphRAG通过保留中间检索步骤的思维链,增强了系统的可解释性。最后,我们讨论了未来工作如何通过减轻计算开销、应对大语言模型可能产生的幻觉问题,以进一步提升多跳问答的效率和可靠性。

0
下载
关闭预览

相关内容

自动问答(Question Answering, QA)是指利用计算机自动回答用户所提出的问题以满足用户知识需求的任务。不同于现有搜索引擎,问答系统是信息服务的一种高级形式,系统返回用户的不再是基于关键词匹配排序的文档列表,而是精准的自然语言答案。近年来,随着人工智能的飞速发展,自动问答已经成为倍受关注且发展前景广泛的研究方向。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员