The Fokker-Planck (FP) equation is a foundational PDE in stochastic processes. However, curse of dimensionality (CoD) poses challenge when dealing with high-dimensional FP PDEs. Although Monte Carlo and vanilla Physics-Informed Neural Networks (PINNs) have shown the potential to tackle CoD, both methods exhibit numerical errors in high dimensions when dealing with the probability density function (PDF) associated with Brownian motion. The point-wise PDF values tend to decrease exponentially as dimension increases, surpassing the precision of numerical simulations and resulting in substantial errors. Moreover, due to its massive sampling, Monte Carlo fails to offer fast sampling. Modeling the logarithm likelihood (LL) via vanilla PINNs transforms the FP equation into a difficult HJB equation, whose error grows rapidly with dimension. To this end, we propose a novel approach utilizing a score-based solver to fit the score function in SDEs. The score function, defined as the gradient of the LL, plays a fundamental role in inferring LL and PDF and enables fast SDE sampling. Three fitting methods, Score Matching (SM), Sliced SM (SSM), and Score-PINN, are introduced. The proposed score-based SDE solver operates in two stages: first, employing SM, SSM, or Score-PINN to acquire the score; and second, solving the LL via an ODE using the obtained score. Comparative evaluations across these methods showcase varying trade-offs. The proposed method is evaluated across diverse SDEs, including anisotropic OU processes, geometric Brownian, and Brownian with varying eigenspace. We also test various distributions, including Gaussian, Log-normal, Laplace, and Cauchy. The numerical results demonstrate the score-based SDE solver's stability, speed, and performance across different settings, solidifying its potential as a solution to CoD for high-dimensional FP equations.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员