Variable independence and decomposability are algorithmic techniques for simplifying logical formulas by tearing apart connections between free variables. These techniques were originally proposed to speed up query evaluation in constraint databases, in particular by representing the query as a Boolean combination of formulas with no interconnected variables. They also have many other applications in SMT, string analysis, databases, automata theory and other areas. However, the precise complexity of variable independence and decomposability has been left open especially for the quantifier-free theory of linear real arithmetic (LRA), which is central in database applications. We introduce a novel characterization of formulas admitting decompositions and use it to show that it is coNP-complete to decide variable decomposability over LRA. As a corollary, we obtain that deciding variable independence is in $ \Sigma_2^p $. These results substantially improve the best known double-exponential time algorithms for variable decomposability and independence. In many practical applications, it is crucial to be able to efficiently eliminate connections between variables whenever possible. We design and implement an algorithm for this problem, which is optimal in theory, exponentially faster compared to the current state-of-the-art algorithm and efficient on various microbenchmarks. In particular, our algorithm is the first one to overcome a fundamental barrier between non-discrete and discrete first-order theories. Formulas arising in practice often have few or even no free variables that are perfectly independent. In this case, our algorithm can compute a best-possible approximation of a decomposition, which can be used to optimize database queries by exploiting partial variable independence, which is present in almost every logical formula or database query constraint.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年9月9日
Arxiv
31+阅读 · 2021年6月30日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员