Given real-time sensor data streams obtained from machines, how can we continuously predict when a machine failure will occur? This work aims to continuously forecast the timing of future events by analyzing multi-sensor data streams. A key characteristic of real-world data streams is their dynamic nature, where the underlying patterns evolve over time. To address this, we present TimeCast, a dynamic prediction framework designed to adapt to these changes and provide accurate, real-time predictions of future event time. Our proposed method has the following properties: (a) Dynamic: it identifies the distinct time-evolving patterns (i.e., stages) and learns individual models for each, enabling us to make adaptive predictions based on pattern shifts. (b) Practical: it finds meaningful stages that capture time-varying interdependencies between multiple sensors and improve prediction performance; (c) Scalable: our algorithm scales linearly with the input size and enables online model updates on data streams. Extensive experiments on real datasets demonstrate that TimeCast provides higher prediction accuracy than state-of-the-art methods while finding dynamic changes in data streams with a great reduction in computational time.
翻译:给定从机器获取的实时传感器数据流,我们如何持续预测机器故障何时发生?本研究旨在通过分析多传感器数据流,持续预测未来事件的发生时间。现实世界数据流的一个关键特征是其动态性,即底层模式会随时间演变。为此,我们提出了TimeCast——一个动态预测框架,该框架能够适应这些变化并提供对未来事件时间的准确实时预测。我们提出的方法具有以下特性:(a) 动态性:它能识别不同的时间演化模式(即阶段)并为每个阶段学习独立模型,从而基于模式转变实现自适应预测;(b) 实用性:它能发现捕捉多传感器间时变相互依赖关系的有意义阶段,并提升预测性能;(c) 可扩展性:我们的算法随输入规模线性扩展,支持在数据流上进行在线模型更新。在真实数据集上的大量实验表明,TimeCast相比现有最优方法能提供更高的预测精度,同时能以大幅减少的计算时间发现数据流中的动态变化。