Penalised estimation methods for point processes usually rely on a large amount of independent repetitions for cross-validation purposes. However, in the case of a single realisation of the process, existing cross-validation methods may be impractical depending on the chosen model. To overcome this issue, this paper presents a Ridge-penalised spectral least-squares estimation method for second-order stationary point processes. This is achieved through two novel approaches: a p-thinning-based cross-validation method to tune the penalisation parameter, relying on the spectral representation of the process; and the introduction of a spectral least-squares contrast based around the asymptotic properties of the periodogram of the sample. The proposed method is then illustrated by a simulation study on linear Hawkes processes in the context of parametric estimation, highlighting its performances against more traditional approaches, specifically when working with short observation windows.


翻译:点过程的惩罚估计方法通常依赖于大量独立重复样本进行交叉验证。然而,当仅存在过程的单次实现时,现有交叉验证方法可能因所选模型不同而难以实施。为解决这一问题,本文针对二阶平稳点过程提出了一种基于岭惩罚的谱最小二乘估计方法。该方法通过两种创新途径实现:基于p-稀释的交叉验证方法(依托过程的谱表示)来调整惩罚参数;以及基于样本周期图渐近性质构建的谱最小二乘对比函数。随后通过线性霍克斯过程参数估计场景下的模拟研究,验证了所提方法的有效性,特别在短观测窗口条件下,其性能显著优于传统方法。

0
下载
关闭预览

相关内容

UnHiPPO:面向不确定性的状态空间模型初始化方法
专知会员服务
11+阅读 · 2025年6月6日
【ICML2023】SEGA:结构熵引导的图对比学习锚视图
专知会员服务
24+阅读 · 2023年5月10日
专知会员服务
15+阅读 · 2021年8月29日
专知会员服务
25+阅读 · 2021年7月31日
专知会员服务
20+阅读 · 2020年12月9日
【CVPR2021】跨模态检索的概率嵌入
专知
17+阅读 · 2021年3月2日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
EKF常用于目标跟踪系统的扩展卡尔曼滤波器
无人机
10+阅读 · 2017年7月25日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关VIP内容
UnHiPPO:面向不确定性的状态空间模型初始化方法
专知会员服务
11+阅读 · 2025年6月6日
【ICML2023】SEGA:结构熵引导的图对比学习锚视图
专知会员服务
24+阅读 · 2023年5月10日
专知会员服务
15+阅读 · 2021年8月29日
专知会员服务
25+阅读 · 2021年7月31日
专知会员服务
20+阅读 · 2020年12月9日
相关资讯
【CVPR2021】跨模态检索的概率嵌入
专知
17+阅读 · 2021年3月2日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
EKF常用于目标跟踪系统的扩展卡尔曼滤波器
无人机
10+阅读 · 2017年7月25日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员