Despite recent advances in machine learning and explainable AI, a gap remains in personalized preventive healthcare: predictions, interventions, and recommendations should be both understandable and verifiable for all stakeholders in the healthcare sector. We present a demonstration of how prototype-based learning can address these needs. Our proposed framework, ProtoPal, features both front- and back-end modes; it achieves superior quantitative performance while also providing an intuitive presentation of interventions and their simulated outcomes.


翻译:尽管机器学习和可解释人工智能领域近期取得了进展,个性化预防性医疗保健仍存在一个缺口:预测、干预措施和建议必须同时满足医疗保健领域所有利益相关者的可理解性与可验证性要求。本文展示了原型学习如何满足这些需求。我们提出的ProtoPal框架具备前端与后端双模式;该框架在取得优异量化性能的同时,还能以直观方式呈现干预措施及其模拟结果。

0
下载
关闭预览

相关内容

【NVDIA】Cosmos世界基础模型平台用于物理人工智能
专知会员服务
27+阅读 · 2025年1月13日
深度学习超参数搜索实用指南
云栖社区
28+阅读 · 2018年10月14日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
16+阅读 · 2013年12月31日
VIP会员
相关资讯
相关基金
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
16+阅读 · 2013年12月31日
Top
微信扫码咨询专知VIP会员