Unlearning in large language models (LLMs) is crucial for managing sensitive data and correcting misinformation, yet evaluating its effectiveness remains an open problem. We investigate whether persuasive prompting can recall factual knowledge from deliberately unlearned LLMs across models ranging from 2.7B to 13B parameters (OPT-2.7B, LLaMA-2-7B, LLaMA-3.1-8B, LLaMA-2-13B). Drawing from ACT-R and Hebbian theory (spreading activation theories), as well as communication principles, we introduce Stimulus-Knowledge Entanglement-Behavior Framework (SKeB), which models information entanglement via domain graphs and tests whether factual recall in unlearned models is correlated with persuasive framing. We develop entanglement metrics to quantify knowledge activation patterns and evaluate factuality, non-factuality, and hallucination in outputs. Our results show persuasive prompts substantially enhance factual knowledge recall (14.8% baseline vs. 24.5% with authority framing), with effectiveness inversely correlated to model size (128% recovery in 2.7B vs. 15% in 13B). SKeB provides a foundation for assessing unlearning completeness, robustness, and overall behavior in LLMs.


翻译:大语言模型(LLMs)中的遗忘对于管理敏感数据和纠正错误信息至关重要,然而评估其有效性仍是一个开放性问题。本研究探讨了在参数规模从27亿到130亿(OPT-2.7B、LLaMA-2-7B、LLaMA-3.1-8B、LLaMA-2-13B)的模型中,说服性提示能否从经过刻意遗忘的LLMs中召回事实性知识。基于ACT-R与赫布理论(扩散激活理论)以及传播学原理,我们提出了刺激-知识纠缠-行为框架(SKeB),该框架通过领域图建模信息纠缠,并检验遗忘模型中事实召回是否与说服性表述框架相关。我们开发了纠缠度量指标以量化知识激活模式,并评估输出中的事实性、非事实性与幻觉。实验结果表明,说服性提示显著增强了事实性知识召回(基线14.8% vs. 权威框架24.5%),其效果与模型规模呈负相关(2.7B模型恢复率达128% vs. 13B模型仅15%)。SKeB为评估LLMs中遗忘的完整性、鲁棒性及整体行为奠定了理论基础。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员