Memristor-based hardware offers new possibilities for energy-efficient machine learning (ML) by providing analog in-memory matrix multiplication. Current hardware prototypes cannot fit large neural networks, and related literature covers only small ML models for tasks like MNIST or single word recognition. Simulation can be used to explore how hardware properties affect larger models, but existing software assumes simplified hardware. We propose a PyTorch-based library based on "Synaptogen" to simulate neural network execution with accurately captured memristor hardware properties. For the first time, we show how an ML system with millions of parameters would behave on memristor hardware, using a Conformer trained on the speech recognition task TED-LIUMv2 as example. With adjusted quantization-aware training, we limit the relative degradation in word error rate to 25% when using a 3-bit weight precision to execute linear operations via simulated analog computation.


翻译:忆阻器硬件通过提供模拟内存矩阵乘法,为高效能机器学习(ML)开辟了新途径。当前硬件原型尚无法承载大型神经网络,相关文献仅涵盖用于MNIST或单词语音识别等任务的小型ML模型。虽然可通过仿真探索硬件特性对大型模型的影响,但现有软件通常基于简化的硬件假设。我们提出一个基于"Synaptogen"的PyTorch库,能够精确模拟忆阻器硬件特性下的神经网络执行过程。以在TED-LIUMv2语音识别任务上训练的Conformer模型为例,首次展示了参数规模达百万级的ML系统在忆阻器硬件上的运行特性。通过调整量化感知训练策略,在使用3比特权重精度执行模拟计算线性运算时,我们将词错误率的相对劣化控制在25%以内。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
16+阅读 · 2020年2月6日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员