In this paper, we study the finite element operator network (FEONet), an operator-learning method for parametric problems, originally introduced in J. Y. Lee, S. Ko, and Y. Hong, Finite Element Operator Network for Solving Elliptic-Type Parametric PDEs, SIAM J. Sci. Comput., 47(2), C501-C528, 2025. FEONet realizes the parameter-to-solution map on a finite element space and admits a training procedure that does not require training data, while exhibiting high accuracy and robustness across a broad class of problems. However, its computational cost increases and accuracy may deteriorate as the number of elements grows, posing notable challenges for large-scale problems. In this paper, we propose a new sparse network architecture motivated by the structure of the finite elements to address this issue. Throughout extensive numerical experiments, we show that the proposed sparse network achieves substantial improvements in computational cost and efficiency while maintaining comparable accuracy. We also establish theoretical results demonstrating that the sparse architecture can approximate the target operator effectively and provide a stability analysis ensuring reliable training and prediction.


翻译:本文研究有限元算子网络(FEONet)——一种用于参数化问题的算子学习方法,最初由J. Y. Lee、S. Ko和Y. Hong在《Finite Element Operator Network for Solving Elliptic-Type Parametric PDEs, SIAM J. Sci. Comput., 47(2), C501-C528, 2025》中提出。FEONet在有限元空间上实现参数到解的映射,其训练过程无需训练数据,且在广泛的问题类别中展现出高精度与鲁棒性。然而,随着单元数量的增加,其计算成本会上升且精度可能下降,这对大规模问题构成了显著挑战。本文基于有限元的结构特性,提出一种新型稀疏网络架构以应对此问题。通过大量数值实验,我们证明所提出的稀疏网络在保持相当精度的同时,显著提升了计算成本与效率。我们还建立了理论结果,证明该稀疏架构能有效逼近目标算子,并提供了稳定性分析以确保训练与预测的可靠性。

0
下载
关闭预览

相关内容

WWW 2024 | GraphTranslator: 将图模型对齐大语言模型
专知会员服务
27+阅读 · 2024年3月25日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
【ICML2020】图神经网络谱聚类
专知
10+阅读 · 2020年7月7日
【NeurIPS2019】图变换网络:Graph Transformer Network
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
PCA的基本数学原理
算法与数学之美
11+阅读 · 2017年8月8日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 1月1日
VIP会员
相关资讯
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
【ICML2020】图神经网络谱聚类
专知
10+阅读 · 2020年7月7日
【NeurIPS2019】图变换网络:Graph Transformer Network
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
PCA的基本数学原理
算法与数学之美
11+阅读 · 2017年8月8日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员