We revisit the geometric foundations of mesh representation through the lens of Plane-based Geometric Algebra (PGA), questioning its efficiency and expressiveness for discrete geometry. We find how $k$-simplices (vertices, edges, faces, ...) and $k$-complexes (point clouds, line complexes, meshes, ...) can be written compactly as joins of vertices and their sums, respectively. We show how a single formula for their $k$-magnitudes (amount, length, area, ...) follows naturally from PGA's Euclidean and Ideal norms. This idea is then extended to produce unified coordinate-free formulas for classical results such as volume, centre of mass, and moments of inertia for simplices and complexes of arbitrary dimensionality. Finally we demonstrate the practical use of these ideas on some real-world examples.


翻译:我们通过基于平面的几何代数(PGA)的视角重新审视网格表示的几何基础,质疑其在离散几何中的效率与表达能力。我们发现$k$-单纯形(顶点、边、面、...)和$k$-复形(点云、线复形、网格、...)可以分别紧凑地表示为顶点的连接及其和。我们展示了如何从PGA的欧几里得范数和理想范数自然地推导出它们$k$-度量(数量、长度、面积、...)的统一公式。随后,这一思想被推广以构建无坐标的统一公式,用于计算任意维度单纯形和复形的经典结果,如体积、质心和转动惯量。最后,我们通过若干实际案例展示了这些思想的应用价值。

0
下载
关闭预览

相关内容

【NeurIPS2021】序一致因果图的多任务学习
专知会员服务
20+阅读 · 2021年11月7日
图节点嵌入(Node Embeddings)概述,9页pdf
专知会员服务
40+阅读 · 2020年8月22日
【CVPR2020-旷视】DPGN:分布传播图网络的小样本学习
专知会员服务
28+阅读 · 2020年4月1日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
【NeurIPS2019】图变换网络:Graph Transformer Network
NAACL 2019 | 一种考虑缓和KL消失的简单VAE训练方法
PaperWeekly
20+阅读 · 2019年4月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2025年12月31日
VIP会员
相关VIP内容
【NeurIPS2021】序一致因果图的多任务学习
专知会员服务
20+阅读 · 2021年11月7日
图节点嵌入(Node Embeddings)概述,9页pdf
专知会员服务
40+阅读 · 2020年8月22日
【CVPR2020-旷视】DPGN:分布传播图网络的小样本学习
专知会员服务
28+阅读 · 2020年4月1日
相关资讯
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员