The goal of diversity sampling is to select a representative subset of data in a way that maximizes information contained in the subset while keeping its cardinality small. We introduce the ordered diverse sampling problem based on a new metric that measures the diversity in an ordered list of samples. We present a novel approach for generating ordered diverse samples for textual data that uses principal components on the embedding vectors. The proposed approach is simple and compared with existing approaches using the new metric. We transform standard text classification benchmarks into benchmarks for ordered diverse sampling. Our empirical evaluation shows that prevailing approaches perform 6% to 61% worse than our method while also being more time inefficient. Ablation studies show how the parts of the new approach contribute to the overall metrics.


翻译:多样性采样的目标是以最大化子集所含信息同时保持其基数较小的方式,从数据中选择具有代表性的子集。我们基于一种衡量有序样本列表多样性的新度量指标,提出了有序多样性采样问题。本文提出了一种利用嵌入向量的主成分分析为文本数据生成有序多样性样本的新方法。该方法结构简洁,并基于新度量指标与现有方法进行了对比。我们将标准文本分类基准数据集转化为适用于有序多样性采样的基准测试集。实证评估表明,现有方法的性能比我们的方法低6%至61%,同时时间效率也更低。消融研究揭示了新方法各组成部分对整体指标的贡献机制。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
31+阅读 · 2021年6月30日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Domain Representation for Knowledge Graph Embedding
Arxiv
14+阅读 · 2019年9月11日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员