Maximum likelihood estimation of generalized linear mixed models(GLMMs) is difficult due to marginalization of the random effects. Computing derivatives of a fitted GLMM's likelihood (with respect to model parameters) is also difficult, especially because the derivatives are not by-products of popular estimation algorithms. In this paper, we describe GLMM derivatives along with a quadrature method to efficiently compute them, focusing on lme4 models with a single clustering variable. We describe how psychometric results related to IRT are helpful for obtaining these derivatives, as well as for verifying the derivatives' accuracies. After describing the derivative computation methods, we illustrate the many possible uses of these derivatives, including robust standard errors, score tests of fixed effect parameters, and likelihood ratio tests of non-nested models. The derivative computation methods and applications described in the paper are all available in easily-obtained R packages.


翻译:由于随机效应的边缘化,很难对通用线性混合模型(GLMMs)进行最大可能性估计,因为随机效应的边缘化,因此很难对通用线性混合模型(GLMMs)的最大可能性进行估计,安装的GLMMs可能性的计算机衍生物(就模型参数而言)也是困难的,特别是因为衍生物不是大众估计算法的副产品。在本文中,我们描述了GLMM衍生物以及有效计算这些衍生物的二次分析方法,重点是具有单一组群变量的lme4模型。我们描述了与IRT有关的心理测量结果如何有助于获取这些衍生物,以及验证衍生物的灵敏度。在描述衍生物计算方法之后,我们举例说明了这些衍生物的许多可能用途,包括严格的标准错误、固定效应参数的评分测试和非废弃模型的可能性比测试。本文中描述的衍生物计算方法和应用都存在于容易获取的R包中。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Warped Dynamic Linear Models for Time Series of Counts
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员