Negative control is a strategy for learning the causal relationship between treatment and outcome in the presence of unmeasured confounding. The treatment effect can nonetheless be identified if two auxiliary variables are available: a negative control treatment (which has no effect on the actual outcome), and a negative control outcome (which is not affected by the actual treatment). These auxiliary variables can also be viewed as proxies for a traditional set of control variables, and they bear resemblance to instrumental variables. I propose a family of algorithms based on kernel ridge regression for learning nonparametric treatment effects with negative controls. Examples include dose response curves, dose response curves with distribution shift, and heterogeneous treatment effects. Data may be discrete or continuous, and low, high, or infinite dimensional. I prove uniform consistency and provide finite sample rates of convergence. I estimate the dose response curve of cigarette smoking on infant birth weight adjusting for unobserved confounding due to household income, using a data set of singleton births in the state of Pennsylvania between 1989 and 1991.


翻译:消极控制是一种战略,用于在未测到的混乱情况下了解治疗与结果之间的因果关系。但是,如果存在两个辅助变量,治疗效果是可以确定的:负控制治疗(对实际结果没有影响)和负控制结果(对实际治疗没有影响),这些辅助变量也可以被视为传统一系列控制变量的替代物,它们与工具变量相似。我提议以内核脊回归为基础的一套算法,用于学习带有负控制的非对称治疗效果,例如剂量反应曲线、分布变化的剂量反应曲线和多种治疗效果。数据可以是离散的或连续的或连续的,低的、高的或无限的。我证明一致性,并提供有限的趋同率样本。我用1989年至1991年期间宾夕法尼亚州单吨出生的一组数据估算了婴儿出生体重吸烟的剂量反应曲线,根据未观察到的家庭收入进行调整。

0
下载
关闭预览

相关内容

专知会员服务
82+阅读 · 2021年5月10日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
7+阅读 · 2020年10月9日
VIP会员
相关资讯
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员