While Speech Large Language Models (Speech-LLMs) show strong performance in many applications, their robustness is critically under-tested, especially to speech disfluency. Existing evaluations often rely on idealized inputs, overlooking common disfluencies, particularly those associated with conditions like Parkinson's disease. This work investigates whether current Speech-LLMs can maintain performance when interacting with users who have speech impairments. To facilitate this inquiry, we introduce VocalBench-DF, a framework for the systematic evaluation of disfluency across a multi-dimensional taxonomy. Our evaluation of 22 mainstream Speech-LLMs reveals substantial performance degradation, indicating that their real-world readiness is limited. Further analysis identifies phoneme-level processing and long-context modeling as primary bottlenecks responsible for these failures. Strengthening recognition and reasoning capability from components and pipelines can substantially improve robustness. These findings highlight the urgent need for new methods to improve disfluency handling and build truly inclusive Speech-LLMs


翻译:尽管语音大语言模型(Speech-LLMs)在许多应用中展现出强大的性能,但其鲁棒性尚未得到充分检验,尤其是在处理语音不流畅性方面。现有评估通常依赖于理想化输入,忽视了常见的不流畅现象,特别是与帕金森病等疾病相关的不流畅特征。本研究探讨了当前Speech-LLMs在与存在言语障碍的用户交互时能否保持性能。为此,我们提出了VocalBench-DF框架,该框架基于多维分类体系对不流畅性进行系统性评估。通过对22个主流Speech-LLMs的评估,我们发现模型性能出现显著下降,表明其实际应用准备度仍显不足。进一步分析指出,音素级处理与长上下文建模是导致这些失败的主要瓶颈。通过增强组件与流程中的识别与推理能力,可显著提升模型鲁棒性。这些发现凸显了开发新方法以改进不流畅性处理、构建真正包容性Speech-LLMs的迫切需求。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员