Indoor localization plays a vital role in the era of the IoT and robotics, with WiFi technology being a prominent choice due to its ubiquity. We present a method for creating WiFi fingerprinting datasets to enhance indoor localization systems and address the gap in WiFi fingerprinting dataset creation. We used the Simultaneous Localization And Mapping (SLAM) algorithm and employed a robotic platform to construct precise maps and localize robots in indoor environments. We developed software applications to facilitate data acquisition, fingerprinting dataset collection, and accurate ground truth map building. Subsequently, we aligned the spatial information generated via the SLAM with the WiFi scans to create a comprehensive WiFi fingerprinting dataset. The created dataset was used to train a deep neural network (DNN) for indoor localization, which can prove the usefulness of grid density. We conducted experimental validation within our office environment to demonstrate the proposed method's effectiveness, including a heatmap from the dataset showcasing the spatial distribution of WiFi signal strengths for the testing access points placed within the environment. Notably, our method offers distinct advantages over existing approaches as it eliminates the need for a predefined map of the environment, requires no preparatory steps, lessens human intervention, creates a denser fingerprinting dataset, and reduces the WiFi fingerprinting dataset creation time. Our method achieves 26% more accurate localization than the other methods and can create a six times denser fingerprinting dataset in one-third of the time compared to the traditional method. In summary, using WiFi RSSI Fingerprinting data surveyed by the SLAM-Enabled Robotic Platform, we can adapt our trained DNN model to indoor localization in any dynamic environment and enhance its scalability and applicability in real-world scenarios.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
11+阅读 · 2018年4月8日
Arxiv
14+阅读 · 2018年4月6日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员