We propose a mesh-free method to solve nonconvex energy minimization problems for martensitic phase transitions and twinning in crystals, using the deep learning approach. These problems pose multiple challenges to both analysis and computation, as they involve multiwell gradient energies with large numbers of local minima, each involving a topologically complex microstructure of free boundaries with gradient jumps. We use the Deep Ritz method, whereby candidates for minimizers are represented by parameter-dependent deep neural networks, and the energy is minimized with respect to network parameters. The new essential ingredient is a novel activation function proposed here, which is a smoothened rectified linear unit we call SmReLU; this captures the structure of minimizers where usual activation functions fail. The method is mesh-free and thus can approximate free boundaries essential to this problem without any special treatment, and is extremely simple to implement. We show the results of many numerical computations demonstrating the success of our method.


翻译:我们提出一种无网状方法,用深层学习方法解决非碳化物能源最小化问题,解决水晶中非碳化物级转换和结对的最小化问题。这些问题对分析和计算都提出了多重挑战,因为涉及多孔梯度能量,当地微型能源数量众多,每个系统都涉及一个具有梯度跳跃的自由边界的地形复杂微结构。我们使用深里兹方法,即最小化物的候选体由依赖参数的深神经网络代表,而网络参数的能量则被最小化。新的基本成分是在这里提出的一种新型激活功能,这是一个我们称之为SmReLU的平滑修正线性单元;它捕捉到通常活性功能失效的最小化器的结构。这种方法是无网状的,因此可以在没有特殊处理的情况下接近这个问题所必需的自由边界,并且非常简单。我们展示了许多数字计算的结果,显示了我们的方法的成功。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
VIP会员
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
相关基金
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
Top
微信扫码咨询专知VIP会员