Consider a Dirichlet process mixture model (DPM) with random precision parameter $\alpha$, inducing $K_n$ clusters over $n$ observations through its latent random partition. Our goal is to specify the prior distribution $p\left(\alpha\mid\boldsymbol{\eta}\right)$, including its fixed parameter vector $\boldsymbol{\eta}$, in a way that is meaningful. Existing approaches can be broadly categorised into three groups. Those in the first group rely on the linkage between $p\left(\alpha\mid\boldsymbol{\eta}\right)$ and $p\left(K_n\right)$ to draw conclusions on how to best choose $\boldsymbol{\eta}$ to reflect one's prior knowledge of $K_{n}$; we call them sample-size-dependent. Those in the second and third group consist instead of using quasi-degenerate or improper priors, respectively. In this article, we show how all three methods have limitations, especially for large $n$. We enrich the first group by working out and testing Jeffreys' prior in the context of the DPM framework, and by evaluating its behaviour. Then we propose an alternative methodology which does not depend on $K_n$ or on the size of the available sample, but rather on the relationship between the largest stick lengths in the stick-breaking construction of the DPM; and which reflects those prior beliefs in $p\left(\alpha\mid\boldsymbol{\eta}\right)$. We conclude with an example where existing sample-size-dependent approaches fail, while our sample-size-independent approach continues to be feasible.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2025年3月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员