This paper develops a general approach for deep learning for a setting that includes nonparametric regression and classification. We perform a framework from data that fulfills a generalized Bernstein-type inequality, including independent, $φ$-mixing, strongly mixing and $\mathcal{C}$-mixing observations. Two estimators are proposed: a non-penalized deep neural network estimator (NPDNN) and a sparse-penalized deep neural network estimator (SPDNN). For each of these estimators, bounds of the expected excess risk on the class of Hölder smooth functions and composition Hölder functions are established. Applications to independent data, as well as to $φ$-mixing, strongly mixing, $\mathcal{C}$-mixing processes are considered. For each of these examples, the upper bounds of the expected excess risk of the proposed NPDNN and SPDNN predictors are derived. It is shown that both the NPDNN and SPDNN estimators are minimax optimal (up to a logarithmic factor) in many classical settings.


翻译:本文针对包含非参数回归与分类的场景,提出了一种深度学习的通用方法。我们构建了一个适用于满足广义伯恩斯坦型不等式的数据框架,涵盖独立观测、$φ$混合、强混合及$\mathcal{C}$混合观测。提出了两种估计器:无惩罚深度神经网络估计器(NPDNN)与稀疏惩罚深度神经网络估计器(SPDNN)。针对这两种估计器,我们建立了在Hölder光滑函数类与复合Hölder函数类上的期望超额风险界。研究涵盖独立数据以及$φ$混合、强混合、$\mathcal{C}$混合过程的应用场景。针对每种案例,推导了所提出的NPDNN与SPDNN预测器期望超额风险的上界。研究表明,在众多经典设定中,NPDNN与SPDNN估计器均达到极小化极大最优性(至多相差对数因子)。

0
下载
关闭预览

相关内容

生成式建模:综述
专知会员服务
33+阅读 · 2025年1月13日
【ICML2024】基于正则化的持续学习的统计理论
专知会员服务
21+阅读 · 2024年6月11日
【AAAI2023】面向领域自适应语义分割的几何感知网络
专知会员服务
21+阅读 · 2022年12月7日
【经典书】贝叶斯强化学习概述,147页pdf
专知会员服务
115+阅读 · 2021年11月21日
【CVPR2020-旷视】DPGN:分布传播图网络的小样本学习
专知会员服务
28+阅读 · 2020年4月1日
深度学习超参数搜索实用指南
云栖社区
28+阅读 · 2018年10月14日
深度学习时代的目标检测算法
炼数成金订阅号
40+阅读 · 2018年3月19日
MNIST入门:贝叶斯方法
Python程序员
23+阅读 · 2017年7月3日
国家自然科学基金
8+阅读 · 2015年12月31日
国家自然科学基金
8+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
21+阅读 · 2009年12月31日
国家自然科学基金
17+阅读 · 2008年12月31日
Arxiv
0+阅读 · 1月5日
Arxiv
0+阅读 · 1月3日
VIP会员
相关VIP内容
生成式建模:综述
专知会员服务
33+阅读 · 2025年1月13日
【ICML2024】基于正则化的持续学习的统计理论
专知会员服务
21+阅读 · 2024年6月11日
【AAAI2023】面向领域自适应语义分割的几何感知网络
专知会员服务
21+阅读 · 2022年12月7日
【经典书】贝叶斯强化学习概述,147页pdf
专知会员服务
115+阅读 · 2021年11月21日
【CVPR2020-旷视】DPGN:分布传播图网络的小样本学习
专知会员服务
28+阅读 · 2020年4月1日
相关资讯
深度学习超参数搜索实用指南
云栖社区
28+阅读 · 2018年10月14日
深度学习时代的目标检测算法
炼数成金订阅号
40+阅读 · 2018年3月19日
MNIST入门:贝叶斯方法
Python程序员
23+阅读 · 2017年7月3日
相关基金
国家自然科学基金
8+阅读 · 2015年12月31日
国家自然科学基金
8+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
21+阅读 · 2009年12月31日
国家自然科学基金
17+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员