This paper demonstrates a duality between the non-robustness of polynomial time dimension and the existence of one-way functions. Polynomial-time dimension (denoted $\mathrm{cdim}_\mathrm{P}$) quantifies the density of information of infinite sequences using polynomial time betting algorithms called $s$-gales. An alternate quantification of the notion of polynomial time density of information is using polynomial-time Kolmogorov complexity rate (denoted $\mathcal{K}_\text{poly}$). Hitchcock and Vinodchandran (CCC 2004) showed that $\mathrm{cdim}_\mathrm{P}$ is always greater than or equal to $\mathcal{K}_\text{poly}$. We first show that if one-way functions exist then there exists a polynomial-time samplable distribution with respect to which $\mathrm{cdim}_\mathrm{P}$ and $\mathcal{K}_\text{poly}$ are separated by a uniform gap with probability $1$. Conversely, we show that if there exists such a polynomial-time samplable distribution, then (infinitely-often) one-way functions exist. Using our main results, we solve a long standing open problem posed by Hitchcock and Vinodchandran (CCC 2004) and Stull under the assumption that one-way functions exist. We demonstrate that if one-way functions exist, then there are individual sequences $X$ whose poly-time dimension strictly exceeds $\mathcal{K}_\text{poly}(X)$, that is $\mathrm{cdim}_\mathrm{P}(X) > \mathcal{K}_\text{poly}(X)$. Further, we show that the gap between these quantities can be made as large as possible (i.e. close to 1). We also establish similar bounds for strong poly-time dimension versus asymptotic upper Kolmogorov complexity rates.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
29+阅读 · 2022年3月28日
Arxiv
31+阅读 · 2021年6月30日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员