We consider the numerical solution of an abstract operator equation $Bu=f$ by using a least-squares approach. We assume that $B: X \to Y^*$ is an isomorphism, and that $A : Y \to Y^*$ implies a norm in $Y$, where $X$ and $Y$ are Hilbert spaces. The minimizer of the least-squares functional $\frac{1}{2} \, \| Bu-f \|_{A^{-1}}^2$, i.e., the solution of the operator equation, is then characterized by the gradient equation $Su=B^* A^{-1}f$ with an elliptic and self-adjoint operator $S:=B^* A^{-1} B : X \to X^*$. When introducing the adjoint $p = A^{-1}(f-Bu)$ we end up with a saddle point formulation to be solved numerically by using a mixed finite element method. Based on a discrete inf-sup stability condition we derive related a priori error estimates. While the adjoint $p$ is zero by construction, its approximation $p_h$ serves as a posteriori error indicator to drive an adaptive scheme when discretized appropriately. While this approach can be applied to rather general equations, here we consider second order linear partial differential equations, including the Poisson equation, the heat equation, and the wave equation, in order to demonstrate its potential, which allows to use almost arbitrary space-time finite element methods for the adaptive solution of time-dependent partial differential equations.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
74+阅读 · 2016年11月26日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
74+阅读 · 2016年11月26日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员