Video Motion Magnification (VMM) aims to break the resolution limit of human visual perception capability and reveal the imperceptible minor motion that contains valuable information in the macroscopic domain. However, challenges arise in this task due to photon noise inevitably introduced by photographic devices and spatial inconsistency in amplification, leading to flickering artifacts in static fields and motion blur and distortion in dynamic fields in the video. Existing methods focus on explicit motion modeling without emphasizing prioritized denoising during the motion magnification process. This paper proposes a novel dynamic filtering strategy to achieve static-dynamic field adaptive denoising. Specifically, based on Eulerian theory, we separate texture and shape to extract motion representation through inter-frame shape differences, expecting to leverage these subdivided features to solve this task finely. Then, we introduce a novel dynamic filter that eliminates noise cues and preserves critical features in the motion magnification and amplification generation phases. Overall, our unified framework, EulerMormer, is a pioneering effort to first equip with Transformer in learning-based VMM. The core of the dynamic filter lies in a global dynamic sparse cross-covariance attention mechanism that explicitly removes noise while preserving vital information, coupled with a multi-scale dual-path gating mechanism that selectively regulates the dependence on different frequency features to reduce spatial attenuation and complement motion boundaries. We demonstrate extensive experiments that EulerMormer achieves more robust video motion magnification from the Eulerian perspective, significantly outperforming state-of-the-art methods. The source code is available at https://github.com/VUT-HFUT/EulerMormer.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员