A deep learning model is often considered a black-box model, as its internal workings tend to be opaque to the user. Because of the lack of transparency, it is challenging to understand the reasoning behind the model's predictions. Here, we present an approach to making a deep learning-based solar storm prediction model interpretable, where solar storms include solar flares and coronal mass ejections (CMEs). This deep learning model, built based on a long short-term memory (LSTM) network with an attention mechanism, aims to predict whether an active region (AR) on the Sun's surface that produces a flare within 24 hours will also produce a CME associated with the flare. The crux of our approach is to model data samples in an AR as time series and use the LSTM network to capture the temporal dynamics of the data samples. To make the model's predictions accountable and reliable, we leverage post hoc model-agnostic techniques, which help elucidate the factors contributing to the predicted output for an input sequence and provide insights into the model's behavior across multiple sequences within an AR. To our knowledge, this is the first time that interpretability has been added to an LSTM-based solar storm prediction model.


翻译:深度学习模型常被视为黑箱模型,因其内部工作机制对用户而言往往是不透明的。由于缺乏透明度,理解模型预测背后的推理过程具有挑战性。本文提出一种方法,使基于深度学习的太阳风暴预测模型具备可解释性,其中太阳风暴包括太阳耀斑和日冕物质抛射。该深度学习模型基于带有注意力机制的长短期记忆网络构建,旨在预测太阳表面一个活动区域在24小时内产生耀斑的同时,是否也会产生与该耀斑相关的日冕物质抛射。我们方法的核心是将活动区域内的数据样本建模为时间序列,并利用LSTM网络捕捉数据样本的时序动态特征。为使模型的预测可追溯且可靠,我们采用事后模型无关技术,这些技术有助于阐明输入序列中对预测输出产生影响的因素,并提供对模型在活动区域内多个序列中行为的深入理解。据我们所知,这是首次在基于LSTM的太阳风暴预测模型中引入可解释性。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员