In the ever-expanding landscape of the IoT, managing the intricate network of interconnected devices presents a fundamental challenge. This leads us to ask: "What if we invite the IoT devices to collaboratively participate in real-time network management and IoT data-handling decisions?" This inquiry forms the foundation of our innovative approach, addressing the burgeoning complexities in IoT through the integration of NTN architecture, in particular, VHetNet, and an MT-HFL framework. VHetNets transcend traditional network paradigms by harmonizing terrestrial and non-terrestrial elements, thus ensuring expansive connectivity and resilience, especially crucial in areas with limited terrestrial infrastructure. The incorporation of MT-HFL further revolutionizes this architecture, distributing intelligent data processing across a multi-tiered network spectrum, from edge devices on the ground to aerial platforms and satellites above. This study explores MT-HFL's role in fostering a decentralized, collaborative learning environment, enabling IoT devices to not only contribute but also make informed decisions in network management. This methodology adeptly handles the challenges posed by the non-IID nature of IoT data and efficiently curtails communication overheads prevalent in extensive IoT networks. Significantly, MT-HFL enhances data privacy, a paramount aspect in IoT ecosystems, by facilitating local data processing and limiting the sharing of model updates instead of raw data. By evaluating a case-study, our findings demonstrate that the synergistic integration of MT-HFL within VHetNets creates an intelligent network architecture that is robust, scalable, and dynamically adaptive to the ever-changing demands of IoT environments. This setup ensures efficient data handling, advanced privacy and security measures, and responsive adaptability to fluctuating network conditions.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员