Symbolic regression promises readable equations but struggles to encode unit-aware thresholds and conditional logic. We propose logistic-gated operators (LGO) -- differentiable gates with learnable location and steepness -- embedded as typed primitives and mapped back to physical units for audit. Across two primary health datasets (ICU, NHANES), the hard-gate variant recovers clinically plausible cut-points: 71% (5/7) of assessed thresholds fall within 10% of guideline anchors and 100% within 20%, while using far fewer gates than the soft variant (ICU median 4.0 vs 10.0; NHANES 5.0 vs 12.5), and remaining within the competitive accuracy envelope of strong SR baselines. On predominantly smooth tasks, gates are pruned, preserving parsimony. The result is compact symbolic equations with explicit, unit-aware thresholds that can be audited against clinical anchors -- turning interpretability from a post-hoc explanation into a modeling constraint and equipping symbolic regression with a practical calculus for regime switching and governance-ready deployment.


翻译:符号回归虽能提供可读方程,但在编码单位感知阈值与条件逻辑方面存在困难。我们提出逻辑门控算子——一种具有可学习位置与陡度的可微分门控结构——将其作为类型化基元嵌入,并映射回物理单位以实现审计。在两个主要健康数据集(ICU、NHANES)上的实验表明,硬门控变体能恢复具有临床合理性的截断点:评估阈值中71%(5/7)落在指南锚点的10%误差范围内,100%落在20%误差范围内,且所用门控数量远少于软门控变体(ICU中位数4.0对10.0;NHANES中位数5.0对12.5),同时保持在强符号回归基线的竞争性精度范围内。在主要平滑任务中,门控会被剪枝以保持简洁性。最终得到具有显式单位感知阈值的紧凑符号方程,这些阈值可对照临床锚点进行审计——将可解释性从事后解释转变为建模约束,并为符号回归提供了适用于状态切换与合规部署的实用计算框架。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Deep Learning in Video Multi-Object Tracking: A Survey
Arxiv
58+阅读 · 2019年7月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员