As Large Language Models (LLMs) gain traction across critical domains, ensuring secure and trustworthy training processes has become a major concern. Backdoor attacks, where malicious actors inject hidden triggers into training data, are particularly insidious and difficult to detect. Existing post-training verification solutions like Proof-of-Learning are impractical for LLMs due to their requirement for full retraining, lack of robustness against stealthy manipulations, and inability to provide early detection during training. Early detection would significantly reduce computational costs. To address these limitations, we introduce Proof-of-Training Steps, a verification protocol that enables an independent auditor (Alice) to confirm that an LLM developer (Bob) has followed the declared training recipe, including data batches, architecture, and hyperparameters. By analyzing the sensitivity of the LLMs' language modeling head (LM-Head) to input perturbations, our method can expose subtle backdoor injections or deviations in training. Even with backdoor triggers in up to 10 percent of the training data, our protocol significantly reduces the attacker's ability to achieve a high attack success rate (ASR). Our method enables early detection of attacks at the injection step, with verification steps being 3x faster than training steps. Our results highlight the protocol's potential to enhance the accountability and security of LLM development, especially against insider threats.


翻译:随着大语言模型(LLM)在关键领域的广泛应用,确保其训练过程的安全性与可信性已成为重要议题。后门攻击通过恶意向训练数据注入隐藏触发器,具有隐蔽性强、检测困难的特点。现有训练后验证方案(如训练证明)因需完整重训练、对隐蔽操作缺乏鲁棒性且无法在训练阶段实现早期检测,难以适用于大语言模型。早期检测将显著降低计算成本。为突破这些限制,我们提出训练步骤验证协议,使独立审计方(Alice)能够验证LLM开发者(Bob)是否遵循声明的训练方案,包括数据批次、架构与超参数。通过分析LLM语言建模头对输入扰动的敏感性,本方法能够揭示训练过程中细微的后门注入或偏差。即使在高达10%的训练数据中存在后门触发器,本协议仍能显著降低攻击者实现高攻击成功率的能力。该方法可在注入阶段实现攻击的早期检测,验证步骤速度较训练步骤快3倍。实验结果凸显了该协议在增强LLM开发问责制与安全性方面的潜力,尤其针对内部威胁场景。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Deep Learning in Video Multi-Object Tracking: A Survey
Arxiv
58+阅读 · 2019年7月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员