The growth of machine learning (ML) models and associated datasets triggers a consequent dramatic increase in energy costs for the use and training of these models. In the current context of environmental awareness and global sustainability concerns involving ICT, Green AI is becoming an important research topic. Initiatives like the AI Energy Score Ratings are a good example. Nevertheless, these benchmarking attempts are still to be integrated with existing work on Quality Models and Service-Level Agreements common in other, more mature, ICT subfields. This limits the (automatic) analysis of this model energy descriptions and their use in (semi)automatic model comparison, selection, and certification processes. We aim to leverage the concept of quality models and merge it with existing ML model reporting initiatives and Green/Frugal AI proposals to formalize a Sustainable Quality Model for AI/ML models. As a first step, we propose a new Domain-Specific Language to precisely define the sustainability aspects of an ML model (including the energy costs for its different tasks). This information can then be exported as an extended version of the well-known Model Cards initiative while, at the same time, being formal enough to be input of any other model description automatic process.


翻译:机器学习(ML)模型及相关数据集的增长,导致这些模型使用和训练所需的能源成本急剧增加。在当前涉及信息通信技术(ICT)的环境意识与全球可持续性关切背景下,绿色人工智能正成为一个重要的研究课题。诸如"人工智能能源评分评级"等倡议即是良好范例。然而,这些基准测试尝试仍需与质量模型和服务水平协议等现有工作相整合——这些在其他更成熟的ICT子领域中已普遍应用。这限制了对模型能耗描述的(自动化)分析,以及其在(半)自动化模型比较、选择和认证流程中的应用。我们旨在利用质量模型的概念,将其与现有ML模型报告倡议及绿色/节俭人工智能提案相融合,从而形式化一个面向AI/ML模型的可持续质量模型。作为第一步,我们提出一种新的领域特定语言,用于精确定义ML模型的可持续性维度(包括其不同任务的能源成本)。该信息随后可导出为知名"模型卡"倡议的扩展版本,同时具备足够的形式化程度,可作为任何其他模型描述自动化流程的输入。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2025年10月21日
Arxiv
27+阅读 · 2020年6月19日
Deep Graph Infomax
Arxiv
17+阅读 · 2018年12月21日
Relational Deep Reinforcement Learning
Arxiv
10+阅读 · 2018年6月28日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
0+阅读 · 2025年10月21日
Arxiv
27+阅读 · 2020年6月19日
Deep Graph Infomax
Arxiv
17+阅读 · 2018年12月21日
Relational Deep Reinforcement Learning
Arxiv
10+阅读 · 2018年6月28日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员