Dependency Quantified Boolean Formulas (DQBF) generalize QBF by explicitly specifying which universal variables each existential variable depends on, instead of relying on a linear quantifier order. The satisfiability problem of DQBF is NEXP-complete, and many hard problems can be succinctly encoded as DQBF. Recent work has revealed a strong analogy between DQBF and SAT: k-DQBF (with k existential variables) is a succinct form of k-SAT, and satisfiability is NEXP-complete for 3-DQBF but PSPACE-complete for 2-DQBF, mirroring the complexity gap between 3-SAT (NP-complete) and 2-SAT (NL-complete). Motivated by this analogy, we study the model counting problem for DQBF, denoted #DQBF. Our main theoretical result is that #2-DQBF is #EXP-complete, where #EXP is the exponential-time analogue of #P. This parallels Valiant's classical theorem stating that #2-SAT is #P-complete. As a direct application, we show that first-order model counting (FOMC) remains #EXP-complete even when restricted to a PSPACE-decidable fragment of first-order logic and domain size two. Building on recent successes in reducing 2-DQBF satisfiability to symbolic model checking, we develop a dedicated 2-DQBF model counter. Using a diverse set of crafted instances, we experimentally evaluated it against a baseline that expands 2-DQBF formulas into propositional formulas and applies propositional model counting. While the baseline worked well when each existential variable depends on few variables, our implementation scaled significantly better to larger dependency sets.


翻译:依赖量化布尔公式(DQBF)通过显式指定每个存在变量依赖于哪些全称变量,而非依赖线性量词顺序,从而推广了QBF。DQBF的可满足性问题是NEXP完全的,许多困难问题可以简洁地编码为DQBF。近期研究揭示了DQBF与SAT之间的强类比:k-DQBF(具有k个存在变量)是k-SAT的简洁形式,且3-DQBF的可满足性是NEXP完全的,而2-DQBF是PSPACE完全的,这反映了3-SAT(NP完全)与2-SAT(NL完全)之间的复杂性差距。受此类比启发,我们研究了DQBF的模型计数问题,记为#DQBF。我们的主要理论结果是#2-DQBF是#EXP完全的,其中#EXP是#P的指数时间类比。这与Valiant的经典定理(即#2-SAT是#P完全的)相平行。作为直接应用,我们证明即使限制在PSPACE可判定的片段且域大小为二的一阶逻辑中,一阶模型计数(FOMC)仍然是#EXP完全的。基于近期将2-DQBF可满足性约简为符号模型检验的成功,我们开发了一个专用的2-DQBF模型计数器。通过使用一组精心设计的实例,我们将其与将2-DQBF公式展开为命题公式并应用命题模型计数的基线方法进行了实验评估。当每个存在变量依赖的变量较少时,基线方法表现良好,但我们的实现在处理更大依赖集时展现出显著更好的可扩展性。

0
下载
关闭预览

相关内容

SAT是研究者关注命题可满足性问题的理论与应用的第一次年度会议。除了简单命题可满足性外,它还包括布尔优化(如MaxSAT和伪布尔(PB)约束)、量化布尔公式(QBF)、可满足性模理论(SMT)和约束规划(CP),用于与布尔级推理有明确联系的问题。官网链接:http://sat2019.tecnico.ulisboa.pt/
UnHiPPO:面向不确定性的状态空间模型初始化方法
专知会员服务
11+阅读 · 2025年6月6日
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
专知会员服务
25+阅读 · 2021年7月31日
专知会员服务
50+阅读 · 2021年6月2日
【WWW2021】知识图谱逻辑查询的自监督双曲面表示
专知会员服务
30+阅读 · 2021年4月9日
【NeurIPS2019】图变换网络:Graph Transformer Network
NAACL 2019 | 一种考虑缓和KL消失的简单VAE训练方法
PaperWeekly
20+阅读 · 2019年4月24日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
PCA的基本数学原理
算法与数学之美
11+阅读 · 2017年8月8日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Arxiv
0+阅读 · 1月5日
VIP会员
相关VIP内容
UnHiPPO:面向不确定性的状态空间模型初始化方法
专知会员服务
11+阅读 · 2025年6月6日
NeurIPS 2021 | 寻找用于变分布泛化的隐式因果因子
专知会员服务
17+阅读 · 2021年12月7日
专知会员服务
25+阅读 · 2021年7月31日
专知会员服务
50+阅读 · 2021年6月2日
【WWW2021】知识图谱逻辑查询的自监督双曲面表示
专知会员服务
30+阅读 · 2021年4月9日
相关资讯
【NeurIPS2019】图变换网络:Graph Transformer Network
NAACL 2019 | 一种考虑缓和KL消失的简单VAE训练方法
PaperWeekly
20+阅读 · 2019年4月24日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
PCA的基本数学原理
算法与数学之美
11+阅读 · 2017年8月8日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员