Object transportation in cluttered environments is a fundamental task in various domains, including domestic service and warehouse logistics. In cooperative object transport, multiple robots must coordinate to move objects that are too large for a single robot. One transport strategy is pushing, which only requires simple robots. However, careful selection of robot-object contact points is necessary to push the object along a preplanned path. Although this selection can be solved analytically, the solution space grows combinatorially with the number of robots and object size, limiting scalability. Inspired by how humans rely on common-sense reasoning for cooperative transport, we propose combining the reasoning capabilities of Large Language Models with local search to select suitable contact points. Our LLM-guided local search method for contact point selection, ConPoSe, successfully selects contact points for a variety of shapes, including cuboids, cylinders, and T-shapes. We demonstrate that ConPoSe scales better with the number of robots and object size than the analytical approach, and also outperforms pure LLM-based selection.


翻译:在杂乱环境中进行物体运输是家庭服务和仓储物流等多个领域的一项基本任务。在协同物体运输中,多个机器人必须协调移动单个机器人无法搬运的大型物体。推动是一种运输策略,它只需要结构简单的机器人即可。然而,为了沿着预规划的路径推动物体,必须仔细选择机器人与物体之间的接触点。尽管可以通过解析方法求解此选择问题,但解空间会随着机器人数量和物体尺寸的组合增长而急剧扩大,从而限制了可扩展性。受人类依赖常识推理进行协同运输的启发,我们提出将大语言模型的推理能力与局部搜索相结合,以选择合适的接触点。我们提出的这种基于大语言模型引导的接触点选择局部搜索方法——ConPoSe,能够成功为包括长方体、圆柱体和T形在内的多种形状选择接触点。我们证明,与解析方法相比,ConPoSe在机器人数量和物体尺寸方面的可扩展性更好,并且其性能也优于纯基于大语言模型的选择方法。

0
下载
关闭预览

相关内容

机器人(英语:Robot)包括一切模拟人类行为或思想与模拟其他生物的机械(如机器狗,机器猫等)。狭义上对机器人的定义还有很多分类法及争议,有些电脑程序甚至也被称为机器人。在当代工业中,机器人指能自动运行任务的人造机器设备,用以取代或协助人类工作,一般会是机电设备,由计算机程序或是电子电路控制。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员