This work presents a GPU-accelerated solver for the unit commitment (UC) problem in large-scale power grids. The solver uses the Primal-Dual Hybrid Gradient (PDHG) algorithm to efficiently solve the relaxed linear subproblem, achieving faster bound estimation and improved crossover and branch-and-bound convergence compared to conventional CPU-based methods. These improvements significantly reduce the total computation time for the mixed-integer linear UC problem. The proposed approach is validated on large-scale systems, including 4224-, 6049-, and 6717-bus networks with long control horizons and computationally intensive problems, demonstrating substantial speed-ups while maintaining solution quality.


翻译:本研究提出了一种用于大规模电网机组组合问题的GPU加速求解器。该求解器采用原始-对偶混合梯度算法高效求解松弛线性子问题,相比传统基于CPU的方法,实现了更快的边界估计以及改进的交叉与分支定界收敛性。这些改进显著降低了混合整数线性机组组合问题的总计算时间。所提方法在包括4224、6049和6717节点网络的大规模系统中进行了验证,这些系统具有长控制时域和计算密集型问题,结果表明在保持解质量的同时实现了显著的加速效果。

0
下载
关闭预览

相关内容

MonoGRNet:单目3D目标检测的通用框架(TPAMI2021)
专知会员服务
18+阅读 · 2021年5月3日
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
论文浅尝 | Know-Evolve: Deep Temporal Reasoning for Dynamic KG
开放知识图谱
36+阅读 · 2018年3月30日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
误差反向传播——CNN
统计学习与视觉计算组
30+阅读 · 2018年7月12日
论文浅尝 | Know-Evolve: Deep Temporal Reasoning for Dynamic KG
开放知识图谱
36+阅读 · 2018年3月30日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员