We propose new statistical tests, in high-dimensional settings, for testing the independence of two random vectors and their conditional independence given a third random vector. The key idea is simple, i.e., we first transform each component variable to standard normal via its marginal empirical distribution, and we then test for independence and conditional independence of the transformed random vectors using appropriate $L_\infty$-type test statistics. While we are testing some necessary conditions of the independence or the conditional independence, the new tests outperform the 13 frequently used testing methods in a large scale simulation comparison. The advantage of the new tests can be summarized as follows: (i) they do not require any moment conditions, (ii) they allow arbitrary dependence structures of the components among the random vectors, and (iii) they allow the dimensions of random vectors diverge at the exponential rates of the sample size. The critical values of the proposed tests are determined by a computationally efficient multiplier bootstrap procedure. Theoretical analysis shows that the sizes of the proposed tests can be well controlled by the nominal significance level, and the proposed tests are also consistent under certain local alternatives. The finite sample performance of the new tests is illustrated via extensive simulation studies and a real data application.


翻译:本文提出了一种在高维情形下检验两个随机向量之间独立性及其在给定第三个随机向量时条件独立性的新统计检验方法。其核心思想简明:首先通过各分量变量的边际经验分布将每个分量变量转换为标准正态变量,随后利用适当的$L_\infty$型检验统计量对变换后随机向量的独立性及条件独立性进行检验。尽管我们检验的是独立性或条件独立性的某些必要条件,但大规模模拟比较表明,新检验方法在性能上优于13种常用检验方法。新检验的优势可概括如下:(1)不要求任何矩条件;(2)允许随机向量内分量间存在任意依赖结构;(3)允许随机向量维度以样本量的指数速率发散。所提检验的临界值通过计算高效的多重自助法程序确定。理论分析表明,所提检验的显著性水平可由名义显著性水平有效控制,且在特定局部备择假设下具有一致性。通过大量模拟研究和实际数据应用,展示了新检验在有限样本下的性能表现。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
Arxiv
12+阅读 · 2021年9月13日
VIP会员
相关VIP内容
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员