We consider the problem of learning from training data obtained in different contexts, where the test data is subject to distributional shifts. We develop a distributionally robust method that focuses on excess risks and achieves a more appropriate trade-off between performance and robustness than the conventional and overly conservative minimax approach. The proposed method is computationally feasible and provides statistical guarantees. We demonstrate its performance using both real and synthetic data.


翻译:我们考虑了从不同情况下获得的培训数据中学习的问题,在这些情况下,测试数据会发生分布变化;我们开发了一种分配上稳健的方法,侧重于超额风险,并在业绩和稳健性之间实现比传统和过于保守的小型最大方法更适当的权衡。提议的方法在计算上是可行的,并提供统计保证。我们用真实和合成数据来证明其绩效。

0
下载
关闭预览

相关内容

Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
112+阅读 · 2020年5月15日
因果关联学习,Causal Relational Learning
专知会员服务
185+阅读 · 2020年4月21日
因果图,Causal Graphs,52页ppt
专知会员服务
253+阅读 · 2020年4月19日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
VIP会员
相关VIP内容
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
112+阅读 · 2020年5月15日
因果关联学习,Causal Relational Learning
专知会员服务
185+阅读 · 2020年4月21日
因果图,Causal Graphs,52页ppt
专知会员服务
253+阅读 · 2020年4月19日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员