Integrate and fire is a resource efficient time-encoding mechanism that summarizes into a signed spike train those time intervals where a signal's charge exceeds a certain threshold. We analyze the IF encoder in terms of a very general notion of approximate bandwidth, which is shared by most commonly-used signal models. This complements results on exact encoding that may be overly adapted to a particular signal model. We take into account, possibly for the first time, the effect of uncertainty in the exact location of the spikes (as may arise by decimation), uncertainty of integration leakage (as may arise in realistic manufacturing), and boundary effects inherent to finite periods of exposure to the measurement device. The analysis is done by means of a concrete bandwidth-based Ansatz that can also be useful to initialize more sophisticated model specific reconstruction algorithms, and uses the earth mover's (Wassertein) distance to measure spike discrepancy.


翻译:积分与发放是一种资源高效的时间编码机制,其将信号电荷超过特定阈值的时间区间概括为带符号的脉冲序列。我们基于一种非常通用的近似带宽概念来分析IF编码器,该概念被大多数常用信号模型所共享。这补充了可能过度适应特定信号模型的精确编码结果。我们首次考虑了以下因素的综合影响:脉冲精确位置的不确定性(可能由降采样引起)、积分泄漏的不确定性(可能在实际制造中产生),以及有限测量周期固有的边界效应。分析通过一个具体的基于带宽的假设展开,该假设也可用于初始化更复杂的模型特定重建算法,并采用推土机(Wasserstein)距离来度量脉冲差异。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
16+阅读 · 2022年5月17日
A survey on deep hashing for image retrieval
Arxiv
15+阅读 · 2020年6月10日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员