This paper reviews and compares methods to assess treatment effect heterogeneity in the context of parametric regression models. These methods include the standard likelihood ratio tests, bootstrap likelihood ratio tests, and Goeman's global test motivated by testing whether the random effect variance is zero. We place particular emphasis on tests based on the score-residual of the treatment effect and explore different variants of tests in this class. All approaches are compared in a simulation study, and the approach based on residual scores is illustrated in a study comparing multiple doses versus placebo. Our findings demonstrate that score-residual based methods provide practical, flexible and reliable tools for identifying treatment effect heterogeneity and treatment effect modifiers, and can provide useful guidance for decision making around treatment effect heterogeneity.


翻译:本文综述并比较了在参数回归模型背景下评估处理效应异质性的方法。这些方法包括标准似然比检验、自助法似然比检验,以及由检验随机效应方差是否为零所启发的Goeman全局检验。我们特别强调基于处理效应得分残差的检验,并探讨了此类检验的不同变体。所有方法均在模拟研究中进行了比较,而基于残差得分的方法在一项比较多种剂量与安慰剂的研究中得到了例证。我们的研究结果表明,基于得分残差的方法为识别处理效应异质性及处理效应修饰因子提供了实用、灵活且可靠的工具,并能为围绕处理效应异质性的决策制定提供有益的指导。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
VIP会员
相关资讯
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员