We consider the k-diameter clustering problem, where the goal is to partition a set of points in a metric space into $k$ clusters, minimizing the maximum distance between any two points in the same cluster. In general metrics, k-diameter is known to be NP-hard, while it has a $2$-approximation algorithm (Gonzalez'85). Complementing this algorithm, it is known that k-diameter is NP-hard to approximate within a factor better than $2$ in the $\ell_1$ and $\ell_\infty$ metrics, and within a factor of $1.969$ in the $\ell_2$ metric (Feder-Greene'88). When $k\geq 3$ is fixed, k-diameter remains NP-hard to approximate within a factor better than $2$ in the $\ell_\infty$ metric (Megiddo'90). However, its approximability in this setting has not previously been studied in the $\ell_1$ and $\ell_2$ metrics, though a $1.415$-approximation algorithm in the $\ell_2$ metric follows from a known result (Badoiu et al.'02). In this paper, we address the remaining gap by showing new hardness of approximation results that hold even when $k=3$. Specifically, we prove that 3-diameter is NP-hard to approximate within a factor better than $1.5$ in the $\ell_1$ metric, and within a factor of $1.304$ in the $\ell_2$ metric.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员