While Small Language Models (SLMs) have demonstrated promising performance on an increasingly wide array of commonsense reasoning benchmarks, current evaluation practices rely almost exclusively on the accuracy of their final answers, neglecting the validity of the reasoning processes that lead to those answers. To address this issue, we introduce ReTraceQA, a novel benchmark that introduces process-level evaluation for commonsense reasoning tasks. Our expert-annotated dataset reveals that in a substantial portion of instances (14-24%), SLMs provide correct final answers despite flawed reasoning processes, suggesting that the capabilities of SLMs are often overestimated by evaluation metrics that focus only on comparing the final answer with the ground truth. Indeed, we show that when employing strong Large Language Models (LLMs) as automated judges for reasoning-aware evaluation rather than answer-only metrics, SLM performance drops significantly across all models and datasets, with scores decreasing by up to 25%.


翻译:尽管小型语言模型(SLMs)在日益增多的常识推理基准测试中展现出令人期待的性能,当前评估实践几乎完全依赖其最终答案的准确性,而忽视了导致这些答案的推理过程的有效性。为解决这一问题,我们提出ReTraceQA——一个为常识推理任务引入过程级评估的新型基准。我们的专家标注数据集显示,在相当一部分案例(14-24%)中,SLMs在推理过程存在缺陷的情况下仍能给出正确的最终答案,这表明仅通过对比最终答案与标准答案的评估指标往往会高估SLMs的实际能力。事实上,我们证明当采用强大的大型语言模型(LLMs)作为推理感知评估的自动评判器而非仅依赖答案匹配指标时,所有模型和数据集上的SLM性能均出现显著下降,评分降幅最高可达25%。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员