Fully homomorphic encryption (FHE) frees cloud computing from privacy concerns by enabling secure computation on encrypted data. However, its substantial computational and memory overhead results in significantly slower performance compared to unencrypted processing. To mitigate this overhead, we present Cheddar, a high-performance FHE library for GPUs, achieving substantial speedups over previous GPU implementations. We systematically enable 32-bit FHE execution, leveraging the 32-bit integer datapath within GPUs. We optimize GPU kernels using efficient low-level primitives and algorithms tailored to specific GPU architectures. Further, we alleviate the memory bandwidth burden by adjusting common FHE operational sequences and extensively applying kernel fusion. Cheddar delivers performance improvements of 2.18--4.45$\times$ for representative FHE workloads compared to state-of-the-art GPU implementations.


翻译:全同态加密(FHE)通过对加密数据进行安全计算,使云计算摆脱了隐私问题的困扰。然而,其巨大的计算与内存开销导致其性能显著慢于非加密处理。为缓解此开销,我们提出了Cheddar——一个面向GPU的高性能FHE库,相比先前的GPU实现获得了显著的加速效果。我们系统性地实现了32位FHE运算,充分利用GPU内部的32位整数数据通路。通过采用针对特定GPU架构优化的高效底层原语和算法,我们对GPU内核进行了优化。此外,我们通过调整常见FHE操作序列并广泛运用内核融合技术,减轻了内存带宽压力。与最先进的GPU实现相比,Cheddar在典型FHE工作负载上实现了2.18–4.45倍的性能提升。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员