Post-training fundamentally alters the behavior of large language models (LLMs), yet its impact on the internal parameter space remains poorly understood. In this work, we conduct a systematic singular value decomposition (SVD) analysis of principal linear layers in pretrained LLMs, focusing on two widely adopted post-training methods: instruction tuning and long-chain-of-thought (Long-CoT) distillation. Our analysis reveals two consistent and unexpected structural changes:(1) a near-uniform geometric scaling of singular values across layers, which theoretically modulates attention scores; and (2) highly consistent orthogonal transformations are applied to the left and right singular vectors of each matrix. Disrupting this orthogonal consistency leads to catastrophic performance degradation. Based on these findings, we propose a simple yet effective framework that interprets post-training as a reparameterization of fixed subspaces in the pretrained parameter space. Further experiments reveal that singular value scaling behaves as a secondary effect, analogous to a temperature adjustment, whereas the core functional transformation lies in the coordinated rotation of singular vectors. These results challenge the prevailing view of the parameter space in large models as a black box, uncovering the first clear regularities in how parameters evolve during training, and providing a new perspective for deeper investigation into model parameter changes.


翻译:训练后处理从根本上改变了大型语言模型的行为,但其对内部参数空间的影响仍鲜为人知。本研究对预训练大型语言模型中的主要线性层进行了系统的奇异值分解分析,重点关注两种广泛采用的训练后方法:指令微调和长思维链蒸馏。我们的分析揭示了两种一致且出人意料的结构变化:(1) 各层奇异值呈现近乎均匀的几何缩放,理论上这会调节注意力分数;(2) 每个矩阵的左右奇异向量均被施加了高度一致的正交变换。破坏这种正交一致性会导致性能灾难性下降。基于这些发现,我们提出了一个简单而有效的框架,将训练后处理解释为预训练参数空间中固定子空间的重新参数化。进一步实验表明,奇异值缩放作为次要效应发挥作用,类似于温度调节,而核心功能转换在于奇异向量的协同旋转。这些发现挑战了将大模型参数空间视为黑盒的主流观点,首次揭示了训练过程中参数演化的清晰规律,为深入研究模型参数变化提供了新视角。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2025年10月29日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员