Deep neural models (e.g. Transformer) naturally learn spurious features, which create a ``shortcut'' between the labels and inputs, thus impairing the generalization and robustness. This paper advances the self-attention mechanism to its robust variant for Transformer-based pre-trained language models (e.g. BERT). We propose \textit{Adversarial Self-Attention} mechanism (ASA), which adversarially biases the attentions to effectively suppress the model reliance on features (e.g. specific keywords) and encourage its exploration of broader semantics. We conduct a comprehensive evaluation across a wide range of tasks for both pre-training and fine-tuning stages. For pre-training, ASA unfolds remarkable performance gains compared to naive training for longer steps. For fine-tuning, ASA-empowered models outweigh naive models by a large margin considering both generalization and robustness.


翻译:深神经模型(如变异器)自然会学习假的特征,这些特征在标签和投入之间制造了“shortcut'”,从而损害一般化和稳健性。本文件将自我注意机制推进到基于变异器的预先培训语言模型(如BERT)的稳健变体中。我们提议了\textit{Adversarial Self-Atrest}机制(ASASA),这种机制在对抗上偏向于注意有效抑制模型对特征的依赖(如特定关键词)并鼓励其探索更广泛的语义。我们从一般化和稳健的角度对培训前阶段和微调阶段的广泛任务进行全面评价。在培训前,ASA展示了与对长期步骤的天真的培训相比的显著业绩增益。关于微调,ASA增强型模型比天性模型要大得多,考虑到通用性和稳健性。

0
下载
关闭预览

相关内容

NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
51+阅读 · 2022年10月2日
专知会员服务
45+阅读 · 2020年10月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年3月30日
Adversarial Transfer Learning
Arxiv
12+阅读 · 2018年12月6日
VIP会员
相关VIP内容
NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
51+阅读 · 2022年10月2日
专知会员服务
45+阅读 · 2020年10月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
相关资讯
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员