As urban logistics demand continues to grow, UAV delivery has become a key solution to improve delivery efficiency, reduce traffic congestion, and lower logistics costs. However, to fully leverage the potential of UAV delivery networks, efficient swarm scheduling and management are crucial. In this paper, we propose a real-time scheduling and management system based on the ``Airport-Unloading Station" model, aiming to bridge the gap between high-level scheduling algorithms and low-level execution systems. This system, acting as middleware, accurately translates the requirements from the scheduling layer into specific execution instructions, ensuring that the scheduling algorithms perform effectively in real-world environments. Additionally, we implement three collaborative scheduling schemes involving autonomous ground vehicles (AGVs), unmanned aerial vehicles (UAVs), and ground staff to further optimize overall delivery efficiency. Through extensive experiments, this study demonstrates the rationality and feasibility of the proposed management system, providing practical solution for the commercial application of UAVs delivery in urban. Code: https://github.com/chengji253/UAVDeliverySystem


翻译:随着城市物流需求持续增长,无人机配送已成为提升配送效率、缓解交通拥堵、降低物流成本的关键解决方案。然而,要充分发挥无人机配送网络的潜力,高效的集群调度与管理至关重要。本文提出一种基于“机场-卸货站”模型的实时调度与管理系统,旨在弥合高层调度算法与底层执行系统之间的鸿沟。该系统作为中间件,能够将调度层的需求精准转化为具体执行指令,确保调度算法在真实环境中有效运行。此外,我们实现了包含自主地面车辆(AGV)、无人机(UAV)与地面工作人员的三类协同调度方案,以进一步优化整体配送效率。通过大量实验,本研究验证了所提管理系统的合理性与可行性,为无人机配送在城市中的商业化应用提供了实用解决方案。代码:https://github.com/chengji253/UAVDeliverySystem

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员