This paper presents a Spatiotemporal Tube (STT)-based control framework for differential-drive mobile robots with dynamic uncertainties and external disturbances, guaranteeing the satisfaction of Temporal Reach-Avoid-Stay (T-RAS) specifications. The approach employs circular STT, characterized by smoothly time-varying center and radius, to define dynamic safe corridors that guide the robot from the start region to the goal while avoiding obstacles. In particular, we first develop a sampling-based synthesis algorithm to construct a feasible STT that satisfies the prescribed timing and safety constraints with formal guarantees. To ensure that the robot remains confined within this tube, we then design analytically a closed-form, approximation-free control law. The resulting controller is computationally efficient, robust to disturbances and {model uncertainties}, and requires no model approximations or online optimization. The proposed framework is validated through simulation studies on a differential-drive robot and benchmarked against state-of-the-art methods, demonstrating superior robustness, accuracy, and computational efficiency.


翻译:本文提出了一种基于时空管(Spatiotemporal Tube,STT)的控制框架,用于处理具有动态不确定性和外部扰动的差速驱动移动机器人,确保满足时间可达-避障-驻留(Temporal Reach-Avoid-Stay,T-RAS)规范。该方法采用圆形时空管,其特征为中心和半径随时间平滑变化,以定义动态安全走廊,引导机器人从起始区域到达目标区域,同时避开障碍物。具体而言,我们首先开发了一种基于采样的综合算法,用于构建满足预设时序与安全约束的可行时空管,并提供形式化保证。为确保机器人始终约束在该管内,我们随后通过解析方法设计了一种闭式、无近似的控制律。所得控制器计算高效,对扰动和模型不确定性具有鲁棒性,且无需模型近似或在线优化。通过差速驱动机器人的仿真研究,并与先进方法进行对比验证,所提框架展现了更优的鲁棒性、精度和计算效率。

0
下载
关闭预览

相关内容

【CVPR 2021】变换器跟踪TransT: Transformer Tracking
专知会员服务
22+阅读 · 2021年4月20日
【NeurIPS2019】图变换网络:Graph Transformer Network
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
CosFace: Large Margin Cosine Loss for Deep Face Recognition论文笔记
统计学习与视觉计算组
44+阅读 · 2018年4月25日
论文浅尝 | Know-Evolve: Deep Temporal Reasoning for Dynamic KG
开放知识图谱
36+阅读 · 2018年3月30日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
VIP会员
相关资讯
【NeurIPS2019】图变换网络:Graph Transformer Network
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
CosFace: Large Margin Cosine Loss for Deep Face Recognition论文笔记
统计学习与视觉计算组
44+阅读 · 2018年4月25日
论文浅尝 | Know-Evolve: Deep Temporal Reasoning for Dynamic KG
开放知识图谱
36+阅读 · 2018年3月30日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
Top
微信扫码咨询专知VIP会员