In this work, we develop an optimal transport (OT) based framework to select informative prototypical examples that best represent a given target dataset. Summarizing a given target dataset via representative examples is an important problem in several machine learning applications where human understanding of the learning models and underlying data distribution is essential for decision making. We model the prototype selection problem as learning a sparse (empirical) probability distribution having the minimum OT distance from the target distribution. The learned probability measure supported on the chosen prototypes directly corresponds to their importance in representing the target data. We show that our objective function enjoys a key property of submodularity and propose an efficient greedy method that is both computationally fast and possess deterministic approximation guarantees. Empirical results on several real world benchmarks illustrate the efficacy of our approach.


翻译:在这项工作中,我们开发了一个基于最佳运输(OT)框架,选择最能代表特定目标数据集的信息性原型样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样像样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样像样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样样

0
下载
关闭预览

相关内容

【CVPR 2021】变换器跟踪TransT: Transformer Tracking
专知会员服务
22+阅读 · 2021年4月20日
【干货书】机器学习速查手册,135页pdf
专知会员服务
127+阅读 · 2020年11月20日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
0+阅读 · 2021年5月28日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员