The deployment of multiple AI-triage devices in radiology departments has grown rapidly, yet the cumulative impact on patient wait-times across different disease conditions remains poorly understood. This research develops a comprehensive mathematical and simulation framework to quantify wait-time trade-offs when multiple AI-triage devices operate simultaneously in a clinical workflow. We created multi-QuCAD, a software tool that models complex multi-AI, multi-disease scenarios using queueing theory principles, incorporating realistic clinical parameters including disease prevalence rates, radiologist reading times, and AI performance characteristics from FDA-cleared devices. The framework was verified through four experimental scenarios ranging from simple two-disease workflows to complex nine-disease systems, comparing preemptive versus non-preemptive scheduling disciplines and priority versus hierarchical triage protocols. Analysis of brain imaging workflows demonstrated that while AI-triage devices significantly reduce wait-times for target conditions, they can substantially delay diagnosis of non-targeted, yet urgent conditions. The study revealed that hierarchical protocol generally provides more wait-time savings for the highest-priority conditions compared to the priority protocol, though at the expense of more delays to lower-priority patients with other time-sensitive conditions. The quantitative framework presented provides essential insights for orchestrating multi-AI deployments to maximize overall patient time-saving benefits while minimizing unintended delay for other important patient populations.


翻译:放射科中多个AI分诊设备的部署已迅速增长,但不同疾病条件下对患者等待时间的累积影响仍知之甚少。本研究开发了一个全面的数学与仿真框架,用于量化临床工作流中多个AI分诊设备同时运行时的等待时间权衡。我们创建了multi-QuCAD软件工具,该工具基于排队论原理对复杂的多AI、多疾病场景进行建模,整合了包括疾病患病率、放射科医师阅片时间以及FDA批准设备的AI性能特征在内的真实临床参数。该框架通过四个实验场景进行了验证,涵盖从简单的双疾病工作流到复杂的九疾病系统,比较了抢占式与非抢占式调度策略以及优先级与分层分诊协议。对脑影像工作流的分析表明,尽管AI分诊设备显著降低了目标疾病的等待时间,但可能大幅延迟非目标但紧急疾病的诊断。研究发现,与优先级协议相比,分层协议通常能为最高优先级疾病提供更多的等待时间节省,但代价是其他具有时间敏感性的低优先级患者面临更多延迟。本研究提出的量化框架为协调多AI部署提供了关键见解,旨在最大化整体患者的时间节省效益,同时最小化对其他重要患者群体的意外延误。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员