Industrial sensor networks produce complex signals with nonlinear structure and shifting distributions. We propose RIE-SenseNet, a novel geometry-aware Transformer model that embeds sensor data in a Riemannian manifold to tackle these challenges. By leveraging hyperbolic geometry for sequence modeling and introducing a manifold-based augmentation technique, RIE-SenseNet preserves sensor signal structure and generates realistic synthetic samples. Experiments show RIE-SenseNet achieves >90% F1-score, far surpassing CNN and Transformer baselines. These results illustrate the benefit of combining non-Euclidean feature representations with geometry-consistent data augmentation for robust pattern recognition in industrial sensing.


翻译:工业传感器网络产生的信号具有非线性结构和时变分布特性。为此,我们提出RIE-SenseNet——一种新颖的几何感知Transformer模型,通过将传感器数据嵌入黎曼流形来应对这些挑战。该方法利用双曲几何进行序列建模,并引入基于流形的数据增强技术,从而保持传感器信号的结构特征并生成逼真的合成样本。实验表明,RIE-SenseNet的F1分数超过90%,显著优于CNN和Transformer基线模型。这些结果证明了将非欧几里得特征表示与几何一致的数据增强相结合,对于工业传感中的鲁棒模式识别具有重要价值。

0
下载
关闭预览

相关内容

传感器(英文名称:transducer/sensor)是一种检测装置,能感受到被测量的信息,并能将感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员