In the past few years, the Web of Things (WOT) became a beneficial game-changing technology within the Agriculture domain as it introduces innovative and promising solutions to the Internet of Things (IoT) agricultural applications problems by providing its services. WOT provides the support for integration, interoperability for heterogeneous devices, infrastructures, platforms, and the emergence of various other technologies. The main aim of this study is about understanding and providing a growing and existing research content, issues, and directions for the future regarding WOT-based agriculture. Therefore, a systematic literature review (SLR) of research articles is presented by categorizing the selected studies published between 2010 and 2020 into the following categories: research type, approaches, and their application domains. Apart from reviewing the state-of-the-art articles on WOT solutions for the agriculture field, a taxonomy of WOT-base agriculture application domains has also been presented in this study. A model has also presented to show the picture of WOT based Smart Agriculture. Lastly, the findings of this SLR and the research gaps in terms of open issues have been presented to provide suggestions on possible future directions for the researchers for future research.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Mac 平台下的最佳 GTD 软件之一.有 iOS 版本. culturedcode.com/things
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员