In this paper, we introduce the problem of Online Matching with Delays and Size-based Costs (OMDSC). The OMDSC problem involves $m$ requests arriving online. At any time, a group can be formed by matching any number of these requests that have been received but are still unmatched. The cost associated with each group is determined by the waiting time for each request within the group and a size-dependent cost. Our goal is to partition all incoming requests into multiple groups while minimizing the total associated cost. The problem extends the TCP acknowledgment problem proposed by Dooly et al. (JACM 2001). It generalizes the cost model for sending acknowledgments. This paper reveals the competitive ratios for a fundamental case where the range of the penalty function is limited to $0$ and $1$. We classify such penalty functions into three distinct cases: (i) a fixed penalty of $1$ regardless of group size, (ii) a penalty of $0$ if and only if the group size is a multiple of a specific integer $k$, and (iii) other situations. The problem of case (i) is equivalent to the TCP acknowledgment problem, for which Dooly et al. proposed a $2$-competitive algorithm. For case (ii), we first show that natural algorithms that match all the remaining requests are $\Omega(\sqrt{k})$-competitive. We then propose an $O(\log k / \log \log k)$-competitive deterministic algorithm by carefully managing match size and timing, and we also prove its optimality. For case (iii), we demonstrate the non-existence of a competitive online algorithm. Additionally, we discuss competitive ratios for other typical penalty functions.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员