Applications of algebraic geometry have sparked much recent work on algebraic matroids. An algebraic matroid encodes algebraic dependencies among coordinate functions on a variety. We study the behavior of algebraic matroids under joins and secants of varieties. Motivated by Terracini's lemma, we introduce the notion of a Terracini union of matroids, which captures when the algebraic matroid of a join coincides with the matroid union of the algebraic matroids of its summands. We illustrate applications of our results with a discussion of the implications for toric surfaces and threefolds.


翻译:代数几何的应用近年来极大地推动了代数拟阵的研究。代数拟阵编码了簇上坐标函数之间的代数依赖关系。我们研究了簇的联与割线操作下代数拟阵的行为。受 Terracini 引理的启发,我们引入了拟阵的 Terracini 并的概念,该概念刻画了联的代数拟阵何时与其各分量代数拟阵的拟阵并相一致。我们通过讨论其对环面曲面与三维环面簇的影响,展示了我们结果的应用。

0
下载
关闭预览

相关内容

UnHiPPO:面向不确定性的状态空间模型初始化方法
专知会员服务
11+阅读 · 2025年6月6日
【NeurIPS2024】几何轨迹扩散模型
专知会员服务
24+阅读 · 2024年10月20日
【NeurIPS2022】黎曼扩散模型
专知会员服务
43+阅读 · 2022年9月15日
专知会员服务
82+阅读 · 2021年5月10日
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
Spark机器学习:矩阵及推荐算法
LibRec智能推荐
16+阅读 · 2017年8月3日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2025年12月31日
Arxiv
0+阅读 · 2025年12月30日
VIP会员
相关VIP内容
UnHiPPO:面向不确定性的状态空间模型初始化方法
专知会员服务
11+阅读 · 2025年6月6日
【NeurIPS2024】几何轨迹扩散模型
专知会员服务
24+阅读 · 2024年10月20日
【NeurIPS2022】黎曼扩散模型
专知会员服务
43+阅读 · 2022年9月15日
专知会员服务
82+阅读 · 2021年5月10日
相关资讯
AAAI 2022 | ProtGNN:自解释图神经网络
专知
10+阅读 · 2022年2月28日
图节点嵌入(Node Embeddings)概述,9页pdf
专知
15+阅读 · 2020年8月22日
Spark机器学习:矩阵及推荐算法
LibRec智能推荐
16+阅读 · 2017年8月3日
相关基金
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员