In an era marked by a demographic change towards an older population, there is an urgent need to improve nutritional monitoring in view of the increase in frailty. This research aims to enhance the identification of meal-taking activities by combining K-Means, GMM, and DBSCAN techniques. Using the Davies-Bouldin Index (DBI) for the optimal meal taking activity clustering, the results show that K-Means seems to be the best solution, thanks to its unrivalled efficiency in data demarcation, compared with the capabilities of GMM and DBSCAN. Although capable of identifying complex patterns and outliers, the latter methods are limited by their operational complexities and dependence on precise parameter configurations. In this paper, we have processed data from 4 houses equipped with sensors. The findings indicate that applying the K-Means method results in high performance, evidenced by a particularly low Davies-Bouldin Index (DBI), illustrating optimal cluster separation and cohesion. Calculating the average duration of each activity using the GMM algorithm allows distinguishing various categories of meal-taking activities. Alternatively, this can correspond to different times of the day fitting to each meal-taking activity. Using K-Means, GMM, and DBSCAN clustering algorithms, the study demonstrates an effective strategy for thoroughly understanding the data. This approach facilitates the comparison and selection of the most suitable method for optimal meal-taking activity clustering.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
VIP会员
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员