In this paper, we propose high order numerical methods to solve a 2D advection diffusion equation, in the highly oscillatory regime. We use an integrator strategy that allows the construction of arbitrary high-order schemes {leading} to an accurate approximation of the solution without any time step-size restriction. This paper focuses on the multiscale challenges {in time} of the problem, that come from the velocity, an $\varepsilon-$periodic function, whose expression is explicitly known. $\varepsilon$-uniform third order in time numerical approximations are obtained. For the space discretization, this strategy is combined with high order finite difference schemes. Numerical experiments show that the proposed methods {achieve} the expected order of accuracy, and it is validated by several tests across diverse domains and boundary conditions. The novelty of the paper consists of introducing a numerical scheme that is high order accurate in space and time, with a particular attention to the dependency on a small parameter in the time scale. The high order in space is obtained enlarging the interpolation stencil already established in [44], and further refined in [46], with a special emphasis on the squared boundary, especially when a Dirichlet condition is assigned. In such case, we compute an \textit{ad hoc} Taylor expansion of the solution to ensure that there is no degradation of the accuracy order at the boundary. On the other hand, the high accuracy in time is obtained extending the work proposed in [19]. The combination of high-order accuracy in both space and time is particularly significant due to the presence of two small parameters-$\delta$ and $\varepsilon$-in space and time, respectively.


翻译:暂无翻译

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
专知会员服务
55+阅读 · 2020年3月16日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
相关基金
国家自然科学基金
2+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员