Policymakers and researchers often seek to understand how a policy differentially affects a population and the pathways driving this heterogeneity. For example, when studying an excise tax on sweetened beverages, researchers might assess the roles of cross-border shopping, economic competition, and store-level price changes on beverage sales trends. However, traditional policy evaluation tools, like the difference-in-differences (DiD) approach, primarily target average effects of the observed intervention rather than the underlying drivers of effect heterogeneity. Common approaches to evaluate sources of heterogeneity often lack a causal framework, making it difficult to determine whether observed outcome differences are truly driven by the proposed source of heterogeneity or by other confounding factors. In this paper, we present a framework for evaluating such policy drivers by representing questions of effect heterogeneity under hypothetical interventions and use it to evaluate drivers of the Philadelphia sweetened beverage tax policy effects. Building on recent advancements in estimating causal effect curves under DiD designs, we provide tools to assess policy effect heterogeneity while addressing practical challenges including confounding and neighborhood dynamics.


翻译:政策制定者和研究者常常希望理解政策如何对人口产生差异化影响,以及驱动这种异质性的路径。例如,在研究含糖饮料消费税时,研究者可能会评估跨境购物、经济竞争和商店层面价格变化对饮料销售趋势的作用。然而,传统政策评估工具(如双重差分法)主要关注观测干预的平均效应,而非效应异质性的内在驱动因素。评估异质性来源的常用方法往往缺乏因果框架,难以确定观测到的结果差异究竟是由所提出的异质性来源驱动,还是由其他混杂因素导致。本文提出一个评估此类政策驱动因素的框架,通过在假设干预下表征效应异质性问题,并将其应用于费城含糖饮料税收政策效应的驱动因素评估。基于双重差分设计下估计因果效应曲线的最新进展,我们提供了评估政策效应异质性的工具,同时解决了包括混杂效应和邻里动态在内的实际挑战。

0
下载
关闭预览

相关内容

这个新版本的工具会议系列恢复了从1989年到2012年的50个会议的传统。工具最初是“面向对象语言和系统的技术”,后来发展到包括软件技术的所有创新方面。今天许多最重要的软件概念都是在这里首次引入的。2019年TOOLS 50+1在俄罗斯喀山附近举行,以同样的创新精神、对所有与软件相关的事物的热情、科学稳健性和行业适用性的结合以及欢迎该领域所有趋势和社区的开放态度,延续了该系列。 官网链接:http://tools2019.innopolis.ru/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
46+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员