This paper addresses the problem of detecting change points in the spectral density of time series, motivated by EEG analysis of seizure patients. Seizures disrupt coherence and functional connectivity, necessitating precise detection. Departing from traditional parametric approaches, we utilize the Wold decomposition, representing general time series as autoregressive processes with infinite lags, which are truncated and estimated around the change point. Our detection procedure employs an initial estimator that systematically searches across time points. We examine the localization error and its dependence on time series properties and sample size. To enhance accuracy, we introduce an optimal rate method with an asymptotic distribution, facilitating the construction of confidence intervals. The proposed method effectively identifies seizure onset in EEG data and extends to event detection in video data. Comprehensive numerical experiments demonstrate its superior performance compared to existing techniques.


翻译:本文针对癫痫患者脑电图分析中的需求,研究时间序列谱密度变点检测问题。癫痫发作会破坏神经信号的相干性与功能连接性,因此需要精确检测变点。与传统参数化方法不同,我们采用沃尔德分解,将一般时间序列表示为无限滞后自回归过程,并在变点附近进行截断与估计。检测程序采用一种在时间点上系统搜索的初始估计量。我们分析了定位误差及其对时间序列特性与样本量的依赖关系。为提高精度,我们提出具有渐近分布的最优速率方法,以构建置信区间。该方法能有效识别脑电图数据中的癫痫发作起始点,并可扩展至视频数据的事件检测。综合数值实验表明,其性能优于现有技术。

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员